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Efficient laser arrays for infrared spectroscopy

Manijeh Razeghi

New high-power quantum cascade lasers show continuous-wave operation and wide tunability at room
temperature.
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All molecules absorb infrared radiation at characteristic frequencies, with most substances
preferring the mid-infrared band (roughly, the 3–16μm wavelength range). Hence, infrared
spectroscopy can be applied to the study and identification of chemicals. In fact, this
technique is used for manufacturing quality control of a variety of products that we interact
with daily, including food and beverages, plastics, pharmaceuticals, and textiles. It is also
useful in detecting the presence of unwanted or toxic chemicals such as pollutants,
explosives, nerve gas, and others.

In general, infrared spectroscopy is a very specific technique (capable of identifying a
particular substance and not have false detections due to the existence of a similar chemical in the sample) that
can be done quickly and on-site. However, detecting trace amounts (parts-per-billion) of chemicals is often
challenging. The reason is that traditional broadband infrared light sources do not have the necessary
characteristics for use with high-sensitivity detection techniques such as cavity ring-down spectroscopy or
photoacoustic spectroscopy. These require a long light-path length (or, equivalently, a laser source that is highly
directional) or high average power at a specific wavelength. On the other hand, tunable lasers can have these
characteristics, which makes them an enabling technology for trace detection of harmful chemicals.

The choice of lasers, however, is limited. Large systems based on carbon dioxide lasers and optical parametric
oscillators have been used for a while, but suffer limitations due to size and cost. Semiconductor laser diode
sources, which are inherently compact and durable, would be preferable. Unfortunately, this development has been
hindered by intrinsic physical limitations of the technology. These include the need to cryogenically cool the laser
or deal with pulsed operation, which broadens linewidths, reduces spectroscopic resolution, and limits average
power delivery.

The indium-phosphide (InP) system  is well suited for many types of semiconductor devices, and it is already
predominant in telecommunications. An added benefit is that it can be used to make high-power mid-infrared
quantum cascade lasers (QCLs).  Because this technology is compact and can often be used directly at room
temperature, it is being investigated for a variety of spectroscopic applications. Wide tunability in low power
devices has been demonstrated using external cavity optical feedback.

Recently, there have been tremendous improvements in mid-infrared QCL technology in terms of output power and
efficiency.  To date, we have demonstrated room temperature continuous-wave operation with 5W output power
and wall-plug efficiency above 20% at a wavelength around 5μm. In addition, we continue to explore possibilities
of combining high power capability with tunable single mode (single wavelength) devices since a laser array with
these characteristics is particularly attractive for chemical sensing applications. This effort led us to demonstrate
34W peak power in a single mode with a photonic crystal (PC) distributed feedback (DFB) coupling mechanism.
The PCDFB approach allows for simultaneous manipulation of the spectrum and the far field using a
two-dimensional grating that is monolithically integrated inside the laser waveguide.

Although pulsed-mode operation is sufficient for some applications, photoacoustic sensors prefer a high-power
continuous-wave laser source for both sensitivity and ease of operation. By adding a surface DFB grating and
high-fidelity thermal packaging, we recently demonstrated a single mode laser at a wavelength of approximately
4.75μm with a power output of 1.1W in room temperature continuous operation.  Further optimization has
successfully brought this value to 2.4W.

In terms of tunability, the gain bandwidth of a QCL is usually quite broad (several hundred cm ). Although this
limits the maximum value of the material gain, it also provides the possibility of one device to emit over a wide
spectral range, which is the foundation of all tunable QCLs.

Rather than use external optics and a diffraction grating to tune the laser (as in an external cavity system), an
all-electrical tuning mechanism is more attractive in terms of size, speed, and robustness. An array of DFB lasers is
much more compact and robust, and it has been demonstrated previously for near-infrared and long wavelength
QCLs. In this case, each laser in the array can emit its own individual wavelength and can be electrically tuned by
changing the driving current. Although the tuning range of each laser is limited, combining an array of tens of DFB
lasers can cover a wide range of the electromagnetic spectrum. We have recently demonstrated the first DFB QCL
array working in continuous-wave mode at room temperature that covers a wide spectral range from 4.5 to 4.7μm
(95cm ). This chip can deliver up to 150mW continuous-wave output power with low fidelity thermal packaging
(see Figure 1).
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Figure 1. Fully packaged distributed feedback quantum cascade laser array compared with a US quarter. This
device can operate in continuous-wave mode with a wavelength coverage of 4.5–4.7μm at room temperature.

In conclusion, with the improvement of quantum cascade gain media, a widely tunable, high-power DFB-QCL array
is realized for the first time with the capability of room-temperature continuous-wave operation. Future work
includes improving the thermal packaging and implementing a compact design that includes diffraction gratings to
combine the output beam of all the emitters into a single spot. The finished product is anticipated to be highly
attractive for chemical sensing applications.
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